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Abstract

This paper concerns the development and application of a gas-kinetic scheme based on the Bhatnagar–Gross–Krook

(BGK) model for the Navier–Stokes equations in the study of hypersonic viscous flow. Firstly, we extend the gas-kinetic

Navier–Stokes solver [K. Xu, A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with arti-

ficial dissipation and Godunov method, J. Comput. Phys. 171 (2001) 289–335] by implementing a multidimensional

particle propagation mechanism in the flux evaluation, where the gradients of flow variables in both normal and tan-

gential directions of a cell interface are explicitly included. With the construction of a time averaged flux function, an

implicit BGK scheme with LU-SGS method is constructed. The main purpose of the current research is to pave the way

to extend the current approach directly to the flow computation with unstructured mesh, where the flow gradients in

both parallel and perpendicular directions around a cell interface can be explicitly taken into account in a viscous flow

computation. In the numerical parts, we concentrate on the computation of heat flux in laminar hypersonic viscous

flows, where complicated flow phenomena, i.e., shock boundary layer interaction, flow separation, and viscous/inviscid

interaction, will be encountered. The cases studied include the type IV shock–shock interaction around a circular cyl-

inder and hypersonic flow passing through a double-cone geometry. In the hypersonic viscous flow, in comparison with

the capturing of velocity and pressure fields, the accurate computation of stress and heat flux bears large difficulties. In

all cases studied here, the heat fluxes obtained across body surfaces have good agreement with the experimental

measurements.
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1. Introduction

An important issue in the design and development of aerospace vehicles is the effect of various types of

flow phenomena on aerodynamic performance and aerothermal loads. Evaluation of aerodynamic heating

during reentry flight is one of the key issues. To the current stage, the computation of the interaction be-
tween a shock wave and a separated region in the hypersonic flow is still a very challenging problem in

computational fluid dynamics. In terms of heat transfer, significant differences between the computational

results and experiments indicate that further investigation and design of more accurate viscous flow solv-

ers are needed to understand these phenomena. The severe heating rates produced by the viscous/inviscid

interactions and by the shock/shock interactions can cause catastrophic failure for the vehicles in the

hypersonic flight. Over the past 15 years there have been concerted efforts both in Europe and America

to validate the Navier–Stokes and DSMC-based methods in the description of complex hypersonic flows.

Extensive codes validation have been conducted. A number of experiments specifically designed with sim-
ple model configuration in the laminar hypervelocity flow have been constructed and continuously being

used to examine complex flow phenomena, such as the viscous/inviscid interactions. For example, the

double cone geometry case [8], which is also calculated in this paper, is one of the standard cases for

the validation of the Navier–Stokes solvers. Due to the sensitivity of the size of separation zone induced

by the interaction between the viscous boundary layer and the shock wave on the numerical dissipation, it

becomes a good case for testing the Navier–Stokes codes. Also, the type IV shock wave interactions

around a circular cylinder, with a view to simulating the pressure and heating rate augmentation caused

by an impinging shock on the leading edge of a cowl lip of an engine inlet, bears great arguments about
the steady or unsteady nature due to its complicated flow structure and delicate sensitivity of the solution

on numerical schemes. As shown in this paper a steady state solution is obtained by the current scheme

for the type IV shock interaction case.

It is well known that based on the gas-kinetic theory, the Navier–Stokes equations can be derived from

the Boltzmann equation using the Chapman–Enskog expansion. Therefore, a Navier–Stokes solver can be

equally constructed by solving the Boltzmann equation, even with a simplified collision model [3,2]. In the

gas-kinetic representation, all flow variables become the moments of a single particle distribution function.

Since a gas distribution function is used to describe both equilibrium and non-equilibrium states, the invis-
cid and viscous fluxes are obtained simultaneously in the gas-kinetic scheme. However, in the traditional

upwinding schemes for the Navier–Stokes solutions, an operator splitting method is commonly adopted,

where the Riemann solver or equivalent flux evaluation based on two constant states is used for the inviscid

part and the central differences for the viscous and heat conduction parts. Theoretically, the use of different

flow distributions for the inviscid and viscous parts is artificial, which may introduce numerical error in the

cases with strong coupling between the inviscid and viscous interactions. For example, the dissipative char-

acteristic of upwind schemes in the regions with sharp gradients, such as in the boundary layer, may trigger

unsteady mechanism to prevent it from obtaining steady state solution. Even though high-order discretiza-
tions can be introduced for the inviscid and viscous parts separately, an operator splitting error due to the

different initial condition (or equivalently kinematic dissipation) can be hardly eliminated, especially in the

cases with severe coupling between transport and dissipative heating. This may have a determinant conse-

quence on the prediction of heat transfer rates [13], and on the results of the flows which are sensitive to the

numerical dissipation, such as the type IV shock–shock interaction case. On the contrary, for the gas-

kinetic BGK scheme, both inviscid and viscous parts are recovered in a single gas distribution function

f. The time evolution of f is based on the same initial condition. As pointed out earlier [25], the gas-kinetic

description is capable of giving a more complete description of the non-equilibrium flow. Even though the
non-equilibrium parts in a gas-distribution function have no direct contribution to the macroscopic mass,

momentum and energy densities, they do contribute to the higher moments, such as the fluxes. The current

kinetic scheme is based on the collisional gas-kinetic BGK model. In the conventional approach, the
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collisionless Boltzmann equation is employed to derive the formula for the numerical flux. The theory of

kinetic equation for the numerical flux has been studied recently by Ohwada [15,16], and the role of colli-

sion effect is clarified there. Based on Ohwada�s railroad theory, the current gas-kinetic BGK scheme can be

proved to have second accuracy for the Navier–Stokes equations.

In this paper, we are going to first introduce a multidimensional gas-kinetic BGK scheme, where the gra-
dients of flow variables in both normal and tangential directions around a cell interface are accounted in the

flux evaluation. Then the scheme is applied to the study of laminar hypersonic viscous flows. The cases

studied include flow passing a cylinder, type IV shock–shock interactions, and M = 8.03 flow impinging

on a double-cone geometry. In these cases, complicated flow structures, such as shock–shock, shock–

boundary interactions, as well as separated flow regions, are all encountered. All these cases are very sen-

sitive to the dissipation in a numerical scheme which could directly effect the size of the separated region

and the intensity of heat transport.
2. A multidimensional BGK scheme

Similar to the MUSCL type approach, the first step for the gas kinetic BGK scheme is to interpolate the
macroscopic flow variables inside each computational cell. In order to keep the integrity of the gas-kinetic

scheme, as most previous approaches the van Leer limiter is used for the initial data reconstruction of con-

servative variables [19]. The fundamental task in the construction of a finite-volume gas-kinetic scheme is to

evaluate a time-dependent gas distribution function f at a cell interface, from which the numerical flux can

be obtained. Instead of using the slopes in the normal direction only at a cell interface, the slopes in the

tangential direction are also included in the current method. Denote x = 0, y 2 [�Dy/2, Dy/2] as a cell inter-

face, on both sides of this interface the interpolated macroscopic variables have gradients

($q,$(qU),$(qV),$E), where q, qU, qV, and E are the densities of mass, momentum, and energy. The
above gradients are not necessarily in the normal direction of the cell interface.

The BGK model can be written as [1]:
ft þ uf x þ vf y ¼
g � f
s

; ð1Þ
where f is the gas distribution function and g is the equilibrium state approached by f. Both f and g are

functions of space (x, y), time t, particle velocities (u, v), and internal variable n. The particle collision time

s is related to the viscosity and heat conduction coefficients. The equilibrium state is a Maxwellian

distribution,
g ¼ q
k
p

� �Kþ2
2

e�kððu�UÞ2þðv�V Þ2þn2Þ;
where q is the density, U and V are the macroscopic velocities in the x and y-directions, and k is related to

the gas temperature, i.e., m/2kT. For a 2D flow, the particle motion in the z-direction is included into the

internal variable n, and the total number of degrees of freedom K in n is equal to (5 � 3c)/(c � 1) + 1. For

example, for a diatomic gas, K is equal to 3 to account for the random motion in the z-direction and two

rotational internal degree of freedom. In the equilibrium state, n2 is equal to n2 ¼ n21 þ n22 þ � � � þ n2K . The
underlying assumption in the above equilibrium state is that each degree of freedom shares the same

amount of internal energy kT/2, or the so-called equilibrium flow. The effect of the internal degree of free-

dom on the viscous stress, such as the bulk viscosity, will be introduced at the end of this section.

The relation between mass q, momentum (n = qU, m = qV), and energy E densities with the distribution

function f is
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w ¼

q

n

m

E

0
BBB@

1
CCCA ¼

Z
waf dN; a ¼ 1–4; ð2Þ
where wa is the component of the vector of moments
w ¼ ðw1;w2;w3;w4Þ
T ¼ 1; u; v; 1

2
ðu2 þ v2 þ n2Þ

� �T
;

and dN = du dv dn is the volume element in the phase space with dn = dn1 dn2 � � � dnK. Since mass, momen-

tum and energy are conserved during particle collisions, f and g satisfy the conservation constraint
Z
ðg � f Þwa dN ¼ 0; a ¼ 1–4; ð3Þ
at any point in space and time. The derivation from the BGK model to the NS equations can be found in

[20,24].

The general solution f of the BGK model at a cell interface (xi+1/2, yj) and time t is
f ðxiþ1=2; yj; t; u; v; nÞ ¼
1

s

Z t

0

gðx0; y0; t0; u; v; nÞe�ðt�t0Þ=s dt0 þ e�t=sf0ðxiþ1=2 � ut; yj � vtÞ; ð4Þ
where x 0 = xi+1/2 � u(t � t 0), y 0 = yj � v(t � t 0) are the trajectory of a particle motion and f0 is the initial gas

distribution function f at the beginning of each time step (t = 0). Two unknowns g and f0 must be specified
in Eq. (4) in order to obtain the solution f. In order to simplify the notation, (xi+1/2 = 0, yj = 0) will be used

in the following text.

Based on the Chapman–Enskog expansion of the BGK model (1), the gas distribution function up to the

Navier–Stokes order at the point (x = 0, y = 0) and time (t = 0) has the form [17],
fNS ¼ g � sðgt þ ugx þ vgyÞ;
where /1 = �s(gt + ugx + vgy) has to satisfy the compatibility condition �wa/1 dN = 0. To the 2nd-order

accuracy, the gas distribution around the point (x = 0, y = 0) at time t = 0 can be approximated as
fNS ¼ g þ gxxþ gyy � sðgt þ ugx þ vgyÞ:
Therefore, in the multidimensional gas-kinetic scheme with the initial discontinuous macroscopic var-
iables at the left and right hand sides of a cell interface the initial gas distribution function f0 has the

form,
f0 ¼
glð1þ alxþ bly � sðaluþ blvþ AlÞÞ; x 6 0;

grð1þ arxþ bry � sðaruþ brvþ ArÞÞ; x P 0;

(
ð5Þ
where glal, grar, glAl and grAr are related to the spatial and temporal derivatives of the equilibrium states.

Here, different from directional splitting method, glbl and grbr correspond to the gradients in the tangential

direction along the cell interface. Here the terms proportional to s represent the non-equilibrium parts in

the Chapman–Enskog expansion. Note that the non-equilibrium parts have no direct contribution to the

conservative flow variables, i.e.,
Z
ðaluþ blvþ AlÞwag

l dN ¼ 0;Z
ðaruþ brvþ ArÞwag

l dN ¼ 0;

ð6Þ
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which are the exact equations to determine Al and Ar. In the above f0, g
l, gr, al, and ar have the same def-

inition as the corresponding parameters in the BGK-NS method [25].

After having f0, the equilibrium state g around (x = 0, y = 0, t = 0) is constructed as
g ¼ g0 1þ ð1� H ½x�Þ�alxþ H ½x��arxþ �by þ �At
� �

; ð7Þ
where �b is the additional term related to the flow variations in the tangential direction, and H[x] is the

Heaviside function defined as
H ½x� ¼
0; x < 0;

1; x P 0:

�

Here g0 is a local Maxwellian distribution function located at (x = 0, y = 0). In both f0 and g,

al; Al; ar; Ar; �al; �ar; �b; and �A are related to the derivatives of a Maxwellian in space and time.

The dependences of al; ar; . . . ; �A on the particle velocities can be obtained from a Taylor expansion of a

Maxwellian and have the following form,
al ¼ al1 þ al2uþ al3vþ al4
1
2
ðu2 þ v2 þ n2Þ ¼ alawa;

Al ¼ Al
1 þ Al

2uþ Al
3vþ Al

4
1
2
ðu2 þ v2 þ n2Þ ¼ Al

awa;

. . .

�A ¼ �A1 þ �A2uþ �A3vþ �A4
1
2
ðu2 þ n2Þ ¼ �Aawa;
where a = 1–4 and all coefficients al1; a
l
2; . . . ;

�A4 are local constants.

With the initial data reconstruction, we have obtained the distributions �qjðx; yÞ; �mjðx; yÞ;
�njðx; yÞ; and �Ejðx; yÞ inside each cell. At the center of a cell interface (xi+1/2, yj), the left and rightmacroscopic

states are
�wiðxiþ1=2; yjÞ ¼

�qiðxiþ1=2; yjÞ
�miðxiþ1=2; yjÞ
�niðxiþ1=2; yjÞ
�Eiðxiþ1=2; yjÞ

0
BBB@

1
CCCA; �wiþ1ðxiþ1=2; yjÞ ¼

�qiþ1ðxiþ1=2; yjÞ
�miþ1ðxiþ1=2; yjÞ
�niþ1ðxiþ1=2; yjÞ
�Eiþ1ðxiþ1=2; yjÞ

0
BBB@

1
CCCA:
By using the relation between the gas distribution function f and the macroscopic variables (Eq. (2)), we

get
 Z
glwa dN ¼ �wiðxiþ1=2; yjÞ;

Z
glalwa dN ¼~n � rwl; ð8Þ

Z
grwa dN ¼ �wiþ1ðxiþ1=2; yjÞ;

Z
grarwa dN ¼~n � rwr; ð9Þ
where $wl and $wr are the gradients of macroscopic variables on the left and right hand sides of a cell inter-

face, and ~n is the unit normal direction. With the definition of Maxwellian distributions
gl ¼ ql kl

p

� �Kþ2
2

e�klððu�U lÞ2þðv�V lÞ2þn2Þ
and
gr ¼ qr kr

p

� �Kþ2
2

e�krððu�U rÞ2þðv�V rÞ2þn2Þ;
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and from Eqs. (8) and (9), the parameters in gl, gr, al, and ar can be uniquely determined. The detailed for-

mulation can be found in [25]. Similarly, in the tangential direction bl and br can be obtained from
Z
glblwa dN ¼~t � rwl;

Z
grbrwa dN ¼~t � rwr;
where~t is the unit vector in the tangential direction along the cell interface.
After determining the terms al, bl, ar, and br, Al and Ar in f0 can be found from Eq. (6), which are
M l
abA

l
b ¼ � 1

ql

Z
ðaluþ blvÞwa dN;

M r
abA

r
b ¼ � 1

qr

Z
ðaruþ brvÞwa dN;

ð10Þ
where M r
ab ¼

R
grwawb dN=q

r. Again, Mab have the same definition as the directional splitting BGK-NS

method [25].

For the equilibrium state g in Eq. (7), the corresponding values of q0, U0, V0 and k0 in g0,
g0 ¼ q0

k0
p

� �Kþ2
2

e�k0ððu�U0Þ2þðv�V 0Þ2þn2Þ;
can be found as follows. Taking the limit t! 0 in Eq. (4) and substituting its solution into Eq. (3), the con-
servation constraint at (xi+1/2, yj, t = 0) gives
Z

g0wa dN ¼ w0 ¼
Z
u>0

Z
glwa dNþ

Z
u<0

Z
grwa dN; ð11Þ
where w0 = (q0, m0, n0, E0)
T. Since gl and gr have been obtained earlier, the above moments can be evalu-

ated explicitly. Therefore, the conservative variables q0, m0, n0, and E0 at the cell interface can be evaluated,

from which g0 is uniquely determined. For example, k0 in g0 can be found from
k0 ¼ ðK þ 2Þq0=ð4ðE0 � 1
2
ðm2

0 þ n20Þ=q0ÞÞ:
Then, �al and �ar of g in Eq. (7) can be obtained through the relation of
�wiþ1ðxiþ1; yjÞ � w0

q0Dxþ
¼ �M0

ab

�ar1
�ar2
�ar3
�ar4

0
BBB@

1
CCCA ¼ �M0

ab�a
r
b ð12Þ
and
w0 � �wiðxi; yjÞ
q0Dx�

¼ �M0

ab

�al1
�al2
�al3
�al4

0
BBB@

1
CCCA ¼ �M0

ab�a
l
b; ð13Þ
where Dx� = xi+1/2 � xi and Dx+ = xi+1 � xi+1/2 are the distances from the cell interface to cell centers.

Since the matrix �M0

ab ¼
R
g0wawb dN=q0 is known, ð�ar1; �ar2; �ar3; �ar4Þ

T
and ð�al1; �al2; �al3; �al4Þ

T
can be evaluated

accordingly. The term �b is evaluated from
Z
�bw dN ¼

Z
u>0

blw dNþ
Z
u<0

brw dN: ð14Þ
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Up to this point, we have determined all parameters in the initial gas distribution function f0 and the

equilibrium state g at the beginning of each time step t = 0. After substituting Eqs. (5) and (7) into Eq.

(4), the gas distribution function f at a cell interface can be expressed as
f ðxiþ1=2; yj; t; u; v; nÞ ¼ ð1� e�t=sÞg0 þ sð�1þ e�t=sÞ þ t e�t=s
� �

�alH ½u� þ �arð1� H ½u�Þ þ �bv
� �

ug0

þ sðt=s� 1þ e�t=sÞ�Ag0 þ e�t=s ð1� ðt þ sÞðual þ vblÞÞH ½u�gl
�

þð1� ðt þ sÞðuar þ vbrÞÞð1� H ½u�ÞgrÞ þ e�t=s �sAlH ½u�gl � sArð1� H ½u�Þgr
� �

:

ð15Þ
The only unknown left in the above expression is �A. Since both f (Eq. (15)) and g (Eq. (7)) contain �A, the
integration of the conservation constraint (Eq. (3)) at xi+1/2, yj over the whole time step Dt gives
Z Dt

0

Z
ðg � f Þwa dt dN ¼ 0;
which can be used to get �A uniquely. The above gas-kinetic method is similar to that in [25], except addi-

tional terms bl, br, and �b terms related to the flow variations in the tangential direction are included in the
current method.

Finally, the time-dependent numerical fluxes in the normal-direction across the cell interface can be com-

puted by
Fq

Fm

Fn

FE

0
BBB@

1
CCCA

iþ1=2

¼
Z

u

1

u

v
1
2
ðu2 þ v2 þ n2Þ

0
BBB@

1
CCCAf ðxiþ1=2; yj; t; u; v; nÞdN; ð16Þ
where f(xi+1/2, yj, t, u, v, n) is given by Eq. (15). In order to develop an implicit gas-kinetic BGK solver, a

time averaged flux function is needed. For example, based on the above flux function for a cell (i, j) we first

calculate the time averaged residual in that cell,
Ri;j ¼
1

Dt

Z Dt

0

Fiþ1=2;j �Fi�1=2;j

Dx
þ Gi;jþ1=2 � Gi;j�1=2

Dy

� �
dt;
where F and G are the numerical fluxes equation (16) around the four interfaces of the cell (i, j). With the

above residual, an implicit gas-kinetic BGK code using the LU-SGS technique [28] can be written as
D�
x A

þ þ Dþ
x A

� þ D�
y B

þ þ Dþ
y B

�
� �

DW ¼ �R;
where R is the residual vector and DW ¼ W nþ1
i;j � W n

i;j. The flux Jacobian denoted by A = oF/oW and

B = oG/oW are evaluated based on the Euler fluxes and the splitting of A and B have the form
A� ¼ RAK
�
A LA; B� ¼ RBK

�
B LB:
Here LA, LB, RA and RB are the left and right eigenvector of A and B. In the LU-SGS formulation, the

splitting of Matrix K± is given by
K� ¼ 1
2
ðK� rIÞ;
where I is an identity matrix and r is the corresponding largest eigenvalue in matrix A and B.

With the above gas-kinetic flux function, the viscous flow with unit Prandtl number is basically simu-

lated. In order to study the flow with any realistic Prandtl number, a Prandtl number fix based on the mod-
ification of energy flux can be used [25]. In all simulations for the air flow in the next section, the Prandtl
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number is equal to 0.72. The collision time s is determined by s = l/p, and the Sutherland�s law is used for

the viscosity coefficient,
l ¼ l1
T
T1

� �3=2 T1 þ S
T þ S

;

where T1 = 285 K and S = 110.4 K. Theoretically, for a diatomic gas with the assumption of equi-partition

for each degree of freedom, the above BGK scheme is solving the NS equations with both dynamic and

bulk viscosities. The viscous stress of the kinetic scheme has the form [24],
rkl ¼ sp
oUk

oxl
þ oUl

oxk
� 2

3
dkl

oUi

oxi

� �
þ 2K

3ðKþ 3Þ dkl
oUi

oxi

� 	
;

where K accounts for the two rotational degree of freedom. Therefore, for all air flow cases in the next

section we are solving Navier–Stokes equations with both the first and second viscosity coefficients

l = sp and g = 4/15l. In the evaluation of the heat flux across the boundary of flying objects, we first obtain

the temperature gradient in the normal direction oT/on along the wall, then the Fourier�s law is used to get
the heat flux q = �joT/on, where the heat conduction coefficient is obtained based on the viscosity coeffi-

cient and the Prandtl number Pr, i.e., j = Cpl/Pr.
3. The study of hypersonic viscous flows

Evaluation of aerodynamic heating during re-entry flight is one of the key issues in the design of vehi-

cle. However, typical viscous hypersonic flows about bodies display steep gradients not only in regions
0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

cell Reynolds number ρ∞ U∞∆ r / µ∞

p 0 / 
ρ ∞ U

∞2

exact solution
computation

Fig. 1. Calculated stagnation pressure vs. cell Reynolds number.
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with shocks but also in the boundary layers. It is still a great challenge for the accurate computation of

hypersonic viscous flow by the current CFD methods, especially for the accurate capturing of heat flow.

In this section, we are going to concentrate on the calculation of the heat flow in the cases where com-

plicated flow structures, such as shock–shock, shock–boundary layer, as well as separated flows, are in-

volved. In all following calculations, the non-slip isothermal boundary condition is used along body
surfaces.

Case 1. (Hypersonic flow passing through a circular cylinder) This case is taken from the experiment done

by Wieting [21], where the inflow condition for the air is
M1 ¼ 8:03; T1 ¼ 124:94 K; T w ¼ 294:44 K; Re ¼ 1:835� 105:
The computational mesh used in this study is 35 · 63. In our calculations, due to different mesh construc-

tion the cell Reynolds number is defined in the current paper by
Recell ¼ q1U1Dr=l1;
where Dr is the mesh size of the first cell in the normal direction next to the cylinder surface, which varies

from 1 to 100. Note some authors use the definition Rcell = (qcDr/l)wall as the cell Reynolds number, where
c is the sound speed. The calculated stagnation pressure p=ðq1U

2
1Þ with the change of cell Reynolds num-

ber Recell is shown in Fig. 1, and the heat flux q=ðq1U
3
1Þ at the stagnation point is shown in Fig. 2. The

exact solutions in both figures are the grid converged solution at the stagnation point, where the pressure

has the value 0.9209 and the heat flux is equal to 0.003655. Fig. 3 shows the normalized pressure and heat

flux at the cylindrical surface, where both experiments and computation results are included. The computed
0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

–3

q 0 / 
ρ ∞ U

3 ∞

cell Reynolds number ρ∞ U∞∆ r / µ∞

exact solution
computation

Fig. 2. Calculated stagnation point heat flux vs. cell Reynolds number.
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Fig. 4. Pressure and temperature contours.
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Fig. 5. Pressure and temperature distribution of type IV shock–shock interaction.
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pressure and temperature contours around the cylinders are shown in Fig. 4. From this case, we can realize

that the BGK scheme can basically capture the pressure and heat flux.
Case 2. (Type IV shock–shock interaction around a circular cylinder) Shock/shock interaction was classi-

fied by Edney [5] into six patterns, which depend on the impinging position and angle. It results in a very

complex flow field with high pressure and heat flux peak in localized region. Of special interest in this inves-
tigation is the type IV interaction, which occurs when the incident shock impinges on the bow shock in a
Fig. 6. Local Mach and pressure contours in the supersonic jet region.
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region where the flow behind it is subsonic. The type IV interaction is the most severe case to form the hot

spot on the surface of the cylinder due to the supersonic jet hitting on the wall. The interaction results in the

formation of a supersonic impinging jet, a series of shock waves, expansion waves, and shear layers in a

local area of interaction. The supersonic impinging jet, which is bounded by two shear layers separating

the jet from the upper and lower subsonic regions, impinges on the body surface, and is terminated by a

jet bow shock just ahead of the surface. This impinging jet bow shock wave creates a small stagnation
region of high temperature, pressure, and heating rates. Meanwhile, shear layers are formed to separate

the supersonic jet from the lower and upper subsonic regions.

The experimental data were collected by Wieting and Holden [21,22]. In the past decade, many methods

have been used in the study of this case [12,18,6,9,27,29,11,30]. Due to the complicated flow interactions

and different numerical approaches used, the steady state solutions have hardly been obtained, even with

higher-order accuracy method.

In the current calculation, before imposing the incident oblique shock, the initial condition for the inflow

is
M1 ¼ 8:03; T1 ¼ 122:11 K; T w ¼ 294:44 K; Re ¼ 1:94� 105:
Based on the experimental measurement and the numerical calculations, Thareja et al. [18] summarized

that the position of incident impinging shock on the cylinder can be approximated by the curve

y = 0.3271x + 0.4147 for the experiment (Run 21) [21,22], where (x = 0, y = 0) is the center of the cylinder.



Fig. 8. Schematic flow structure for double-cone geometry [14].

K. Xu et al. / Journal of Computational Physics 203 (2005) 405–421 417
Our simulations are based on 181 · 300 mesh points with a cell Reynolds number Recell = 4.6. A steady

state solution is obtained from the explicit scheme after a long time integration with the iterative steps

on the order of 107, where the residual is decreased to the order of 10�7 and the flow structure keeps the

same form. Note that the explicit scheme uses a time step which has the local CFL number on the order

of 0.1. The implicit scheme doesn�t converge for the type IV shock interaction case. The pressure and
Fig. 9. Pressure and temperature distribution around double cone geometry.
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temperature contours around the cylinder are shown in Fig. 5. The flow patterns, i.e., the Mach number

and pressure, in the supersonic jet region are shown in Fig. 6. This figure clearly shows the strong jet

bow shock and hot spot around the cylindrical surface. The measured as well as computational pressure

and heat flux along the cylindrical surface are shown in Fig. 7, where the symbols are the experimental data

[21,22] and solid lines are computational results. In comparison with other numerical observations, excel-
lent match between the experimental measurement and computations are obtained. A similar result with

270 · 300 mesh points has also been obtained. Different from the conclusion in [29], a steady state solution

is obtained in our calculation, at least under the current flow condition. Indeed, complicated flow struc-

tures, such as shear layer, impinging jet, as well as bow shocks, exist in the current case.

Case 3. (Axis-symmetric double cone geometry with flow separation) The double-cone configuration has

a first cone half-angle 25� and the second cone angle 55�. Under the experimental condition (Run 28) [8],

the incident flow has
q1 ¼ 0:6545� 10�3 kg=m3; U1 ¼ 2664:0 m=s; T1 ¼ 185:56 K; T wall ¼ 293:33 K:
The corresponding Mach and Reynolds number are
M1 ¼ 9:59; Re ¼ 13090:
In all series of experiments, the RUN 28 with the above flow condition is the most difficult one to be
calculated due to the large flow separation region. Under this flow condition, the first cone produces an

attached shock wave, and the second cone with larger angle produces a detached bow shock. These two
Fig. 10. Enlarged local Mach (left) and pressure (right) contours around the surface of second cone.
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shocks interact to form a transmitted shock that strikes the second cone surface near the cone–cone junc-

ture. The adverse pressure gradient due to the cone juncture and the transmitted shock generates a large

region of separated flow that produces its own separation shock. This shock interacts with the attached

shock from the first cone, altering the interaction with the detached shock from the second cone. This in

turn effects the size of the separation region. The shock interaction produces very high surface pressure
and heat transfer rates where the transmitted shock impinges on the second cone. As presented in [14],

the schematic flow structure is shown in Fig. 8. Many authors have conducted the simulation for this case

[7,4,10,23].

The coupling between the shock waves and the separation zone makes this flow very sensitive to the

physical modelling of the flow and to the numerical methods. In order to get grid refinement results, we

have run this case with the following mesh
Fig. 11

are the
ð250� 100; 500� 100; 1000� 100; 500� 200; 1000� 200; 1000� 400Þ:

Basically there is no differences in the flow distributions when using 500 · 200 and 1000 · 400 grid

points. The computed pressure and temperature contours with 500 · 200 points are shown in Fig. 9, where

the cell Reynolds number on the order 1 is used in the computation. The Mach number and pressure dis-

tributions around the second cone surface are shown in Fig. 10, where the contact surfaces, transmitted

shock, as well as supersonic shock can be seen clearly. Along the cone surfaces, the measured and compu-

tational pressure and heat flux are presented in Fig. 11, where the symbols are the experimental results [8].

As shown in these figures, the size of the separation region and the heat fluxes on the cone surfaces match
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the experimental data excellently. Especially along the surface of the 2nd-cone, the complicated flow struc-

tures are captured. As analyzed in [14], the deviation in the heat flux before the separation shock along the

first cone surface is due to the non-equilibrium nature in the incoming expansion gas in the experiment de-

vice. In our simulation, the ideal equilibrium incoming gas is assumed.

For most test cases in this section, the steady state is obtained based on the LU-SGS technique. In terms
of the flux evaluation, the current multidimensional BGK solver takes 30% more computational time than

the directional splitting BGK-NS method [25]. However, in terms of the accuracy the differences from the

multidimensional and BGK-NS schemes in the heat flux and pressure distributions are marginal. It may be

due to the strong shock discontinuities involved in all these test cases, where the large amount of numerical

dissipation is introduced in the discontinuous region. For the smooth and continuous low speed flows, the

current multidimensional gas-kinetic scheme goes to the kinetic method in [26], which does give much more

accurate results than the corresponding directionally splitting method.
4. Conclusion

In this paper, we first present a multidimensional gas-kinetic BGK flow solver for the compressible Na-

vier–Stokes equations. Then, this newly developed scheme is applied to the laminar hypersonic viscous

flow, where complicated flow structures are involved. For the viscous flow computation, the difference be-

tween the gas-kinetic BGK scheme and the traditional upwinding method is that the inviscid and viscous

terms are included in a single gas distribution function in the kinetic approach and the time evolution is
based on the same initial macroscopic flow distributions. However, for the traditional methods, an operator

splitting technique is always used, where the inviscid and viscous terms are discretized based on different

flow distributions. The laminar hypersonic viscous flows studied in this paper include the Run 28 of the

double cone geometries and the shock–shock interactions. The complicated flow patterns, such as

shock–shock, shock boundary layer, and inviscid–viscous interactions, are well captured. For example, a

steady state flow structure in type IV shock–shock interaction around a circular cylinder is obtained.

The good agreement between the simulation results and the experimental measurements, especially the heat

flux around body surfaces, shows clearly that the gas-kinetic scheme is a reliable viscous flow solvers, even
though it does not solve the compressible Navier–Stokes equations directly.
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